Nanoscopic barcodes set a new science limit
Imagine shrinking barcodes a million times, from millimetre to nanometre scale, so that they could be used inside living cells to label, identify and track the building blocks of life or, blended into inks to prevent counterfeiting. New, fundamental research, published in Nature Communications, shows the possibilities and opportunities ahead.
The University of Technology Sydney (UTS) led collaboration developed a nanocrystal growth method that controls the growth direction, producing programmable atomic thin layers, arbitrary barcoded nanorods, with morphology uniformity. The result is millions of different kinds of nanobarcodes that can form a "library" for future nanoscale sensing applications.
The University of Technology Sydney (UTS) led collaboration developed a nanocrystal growth method that controls the growth direction, producing programmable atomic thin layers, arbitrary barcoded nanorods, with morphology uniformity. The result is millions of different kinds of nanobarcodes that can form a "library" for future nanoscale sensing applications.
No comments: